On proper harmonic maps between strictly pseudoconvex domains with Kähler metrics of Bergman type
نویسنده
چکیده
where (h) is the inverse of the matrix (hij), ∆M = ∑ i,j h ∂ij and Γ s tγ denote the Christoffel symbols of the Hermitian metric g on N . It follows from (1.1) that if u is holomorphic, then u must be harmonic. Thus, it is natural to ask under what circumstances a harmonic map is holomorphic or antiholomorphic. Under the assumption that both M and N are compact, Siu [31] demonstrated that if the curvature tensor of N is strongly negative and the rank of du is greater than or equal to four at a point of M , then a harmonic map u must be holomorphic or antiholomorphic. The proof follows from Siu’s Bochner type identity together with the compactness assumption on M . If M is a complete noncompact manifold of strongly negative curvature with infinite volume, the previous Bochner type identity technique fails and
منابع مشابه
Hermitian-einstein Metrics for Vector Bundles on Complete Kähler Manifolds
In this paper, we prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete Kähler manifolds which include Hermitian symmetric spaces of noncompact type without Euclidean factor, strictly pseudoconvex domains with Bergman metrics and the universal cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem at infinity for the Hermi...
متن کاملBergman Kernel and Kähler Tensor Calculus
Fefferman [22] initiated a program of expressing the asymptotic expansion of the boundary singularity of the Bergman kernel for strictly pseudoconvex domains explicitly in terms of boundary invariants. Hirachi, Komatsu and Nakazawa [30] carried out computations of the first few terms of Fefferman’s asymptotic expansion building partly on Graham’s work on CR invariants and Nakazawa’s work on the...
متن کاملDuality between Harmonic and Bergman spaces
In this paper we study the duality of the harmonic spaces on the annulus Ω = Ω1 \Ω − between two pseudoconvex domains with Ω− ⊂⊂ Ω1 in Cn and the Bergman spaces on Ω−. We show that on the annulus Ω, the space of harmonic forms for the critical case on (0, n−1)-forms is infinite dimensional and it is dual to the the Bergman space on the pseudoconvex domain Ω−. The duality is further identified e...
متن کاملScattering Theory for Strictly Pseudoconvex Domains
The spectral theory of a metric of Bergman type on a strictly pseudoconvex manifold is described and the scattering matrix is shown to be a pseudodifferential operator of Heisenberg type.
متن کاملEstimates of Invariant Metrics on Pseudoconvex Domains near Boundaries with Constant Levi Ranks
Estimates of the Bergman kernel and the Bergman and Kobayashi metrics on pseudoconvex domains near boundaries with constant Levi ranks are given. Mathematics Subject Classification (2000): 32F45; 32T27.
متن کامل